Skip to main content
Our research experts

Georgy Samsonidze, Ph.D.

Lead Engineer Computational Materials Science

We contribute to the development of next-generation materials for energy conversion and storage applications using classical and quantum atomistic simulations coupled with continuum-level modeling and machine-learning techniques.

Georgy Samsonidze, Ph.D

We use quantum mechanical simulations for predicting properties of materials at the atomic scale. The properties are varied (conductivity, stability, reactivity, sensitivity, selectivity) and application specific (thermoelectrics, batteries, fuel cells, sensors). We perform a computational screening of candidate materials for the desired property and suggest promising candidates for experimental synthesis and characterization.

Please tell us what fascinates you most about research.
Finding myself in an altered state of mind when I become too much submerged into solving a complex technical problem. The introvert in me really enjoys these moments.

What makes research done at Bosch so special?
Continuous validation of our computational methods and tools through close collaboration with experimental teams. This is relatively rare in academia, where computational and experimental groups mostly interact through publications.

What research topics are you currently working on at Bosch?
Developing next-generation materials for sensors and fuel cells that will increase their performance and lifetime.

What are the biggest scientific challenges in your field of research?
The biggest challenges lie in understanding the structure-property relationships of materials. Currently, we have to screen materials databases, compute properties of each material, and select candidates with the desired properties for a specific application. This is computationally expensive and inefficient because of endless possibilities for new material structures. If we could invert the structure-property relationships, we would be able to directly obtain the structure of a material that has the desired properties.

How do the results of your research become part of solutions “Invented for life”?
We design and develop new materials that help to improve the quality, safety, and durability of future Bosch products, thus contributing to customer satisfaction and company success.

Curriculum vitae

Since 2014
Robert Bosch GmbH

2011
UC Berkeley

2004
MIT

Georgy Samsonidze, Ph.D.

Selected publications

Accelerated screening of thermoelectric materials by first-principles computations of electron-phonon scattering

G. Samsonidze & B. Kozinsky (2018)

Accelerated screening of thermoelectric materials by first-principles computations of electron-phonon scattering
  • Advanced Energy Materials
Relationship between segmental dynamics measured by quasi-elastic neutron scattering and conductivity in polymer electrolytes

K. I. S. Mongcopa et al. (2018)

Relationship between segmental dynamics measured by quasi-elastic neutron scattering and conductivity in polymer electrolytes
  • K. I. S. Mongcopa, M. Tyagi, J. P. Mailoa, G. Samsonidze, B. Kozinsky, S. A. Mullin, D. A. Gribble, H. Watanabe, N. P. Balsara
  • ACS Macro Letters, vol. 7, issue 4
NbFeSb-based p-type half-Heuslers for power generation applications

G. Joshi et al. (2014)

NbFeSb-based p-type half-Heuslers for power generation applications
  • G. Joshi, R. He, M. Engber, G. Samsonidze, T. Pantha, E. Dahal, K. Dahal, J. Yang, Y. Lan, B. Kozinsky, Z. Ren
  • Energy & Environmental Science, issue 12
Insights and challenges of applying the GW method to transition metal oxides

G. Samsonidze et al. (2014)

Insights and challenges of applying the GW method to transition metal oxides
  • G. Samsonidze, C. Park, B. Kozinsky
  • Journal of Physics: Condensed Matter, vol. 26, issue 47
georgy samsonidze

Georgy writes for the Bosch Research Blog. Check out his latest article:

Get in touch with me

Georgy Samsonidze, Ph.D.
Lead Engineer Computational Materials Science

Share this on: